بصورت استاندارد دو نوع ترانزیستور بصورت PNP و NPN داریم. انتخاب نامه آنها به نحوه کنار هم قرار گرفتن لایه های نیمه هادی و پلاریته آنها بستگی دارد. هر چند در اوایل ساخت این وسیله الکترونیکی و جایگزینی آن با لامپهای خلاء، ترانزستورها اغلب از جنس ژرمانیم و بصورت PNP ساخته می شدند اما محدودیت های ساخت و فن آوری از یکطرف و تفاوت بهره دریافتی از طرف دیگر، سازندگان را مجبور کرد که بعدها بیشتر از نیمه هادیی از جنس سیلیکون و با پلاریته NPN برای ساخت ترانزیستور استفاده کنند. تفاوت خاصی در عملکرد این دو نمونه وجود ندارد و این بدان معنی نیست که ترانزیستور ژرمانیم با پلاریته NPN یا سیلیکون با پلاریته PNP وجود ندارد.
نمای واقعی تری از پیوندها در یک ترانزیستور که تفاوت کلکتور و امیتر را بوضوح نشان می دهد.
برای هریک از لایه های نیمه هادی که در یک ترانزیستور وجود دارد یک پایه در نظر گرفته شده است که ارتباط مدار بیرونی را به نیمه هادی ها میسر می سازد. این پایه ها به نامهای Base (پایه) ، Collector (جمع کننده) و Emitter (منتشر کننده) مشخص می شوند. اگر به ساختار لایه ای یک ترانزیستور دقت کنیم بنظر تفاوت خاصی میان Collector و Emitter دیده نمی شود اما واقعیت اینگونه نیست. چرا که ضخامت و بزرگی لایه Collector به مراتب از Emitter بزرگتر است و این عملا" باعث می شود که این دو لایه با وجود تشابه پلاریته ای که دارند با یکدیگر تفاوت داشته باشند. با وجود این معمولا" در شکل ها برای سهولت این دو لایه را بصورت یکسان در نظر میگیردند.
بدون آنکه در این مطلب قصد بررسی دقیق نحوه کار یک ترانزیستور را داشته باشیم، قصد داریم ساده ترین مداری که می توان با یک ترانزیستور تهیه کرد را به شما معرفی کرده و کاربرد آنرا برای شما شرح دهیم. به شکل زیر نگاه کنید.
انواع ترانزیستور پیوندی
pnp
شامل سه لایه نیم هادی که دو لایه کناری از نوع p و لایه میانی از نوع n است و مزیت اصلی آن در تشریح عملکرد ترانزیستور این است که جهت جاری شدن حفرهها با جهت جریان یکی است.
npn
شامل سه لایه نیم هادی که دو لایه کناری از نوع n و لایه میانی از نوع p است. پس از درک ایدههای اساسی برای قطعه ی pnp میتوان به سادگی آنها را به ترانزیستور پرکاربردتر npn مربوط ساخت.
ساختمان ترانزیستور پیوندی
ترانزیستور دارای دو پیوندگاه است. یکی بین امیتر و بیس و دیگری بین بیس و کلکتور. به همین دلیل ترانزیستور شبیه دو دیود است. دیود سمت چپ را دیود بیس _ امیتر یا صرفاً دیود امیتر و دیود سمت راست را دیود کلکتور _ بیس یا دیود کلکتور مینامیم. میزان ناخالصی ناحیه وسط به مراتب کمتر از دو ناحیه جانبی است. این کاهش ناخالصی باعث کم شدن هدایت و بالعکس باعث زیاد شدن مقاومت این ناحیه میگردد.
امیتر که به شدت آلائیده شده، نقش گسیل و یا تزریق الکترون به درون بیس را به عهده دارد. بیس بسیار نازک ساخته شده و آلایش آن ضعیف است و لذا بیشتر الکترونهای تزریق شده از امیتر را به کلکتور عبور میدهد. میزان آلایش کلکتور کمتر از میزان آلایش شدید امیتر و بیشتر از آلایش ضعیف بیس است و کلکتور الکترونها را از بیس جمعآوری میکند.
بازسازی اولین ترانزیستور جهان
طرز کار ترانزیستور پیوندی
طرز کار ترانزیستور را با استفاده از نوع npn مورد بررسی قرار میدهیم. طرز کار pnp هم دقیقا مشابه npn خواهد بود، به شرط اینکه الکترونها و حفرهها با یکدیگر عوض شوند. در نوع npn به علت تغذیه مستقیم دیود امیتر ناحیه تهی کم عرض میشود، در نتیجه حاملهای اکثریت یعنی الکترونها از ماده n به ماده p هجوم میآورند. حال اگر دیود بیس _ کلکتور را به حالت معکوس تغذیه نمائیم، دیود کلکتور به علت بایاس معکوس عریضتر میشود.
الکترونهای جاری شده به ناحیه p در دو جهت جاری میشوند، بخشی از آنها از پیوندگاه کلکتور عبور کرده، به ناحیه کلکتور میرسند و تعدادی از آنها با حفرههای بیس بازترکیب شده و به عنوان الکترونهای ظرفیت به سوی پایه خارجی بیس روانه میشوند، این مولفه بسیار کوچک است.
نحوه اتصال ترازیستورها
اتصال بیس مشترک
در این اتصال پایه بیس بین هر دو بخش ورودی و خروجی مدار مشترک است. جهتهای انتخابی برای جریان شاخهها جهت قراردادی جریان در همان جهت حفرهها میشود.
اتصال امیتر مشترک
مدار امیتر مشترک بیشتر از سایر روشها در مدارهای الکترونیکی کاربرد دارد و مداری است که در آن امیتر بین بیس و کلکتور مشترک است. این مدار دارای امپدانس ورودی کم بوده، ولی امپدانس خروجی مدار بالا میباشد.
اتصال کلکتور مشترک
اتصال کلکتور مشترک برای تطبیق امپدانس در مدار بکار میرود، زیرا برعکس حالت قبلی دارای امپدانس ورودی زیاد و امپدانس خروجی پائین است. اتصال کلکتور مشترک غالبا به همراه مقاومتی بین امیتر و زمین به نام مقاومت بار بسته میشود.
ترانزیستور اثر میدانی ( فت ) FET
همانگونه که از نام این المان مشخص است، پایه کنترلی آن جریانی مصرف نمی کند و تنها با اعامل ولتاژ و ایجاد میدان درون نیمه هادی ، جریان عبوری از FET کنترل می شود. به همین دلیل ورودی این مدار هیچ کونه اثر بارگذاری بر روی طبقات تقویت قبلی نمی گذارد و امپدانس بسیار بالایی دارد.
فت دارای سه پایه با نهامهای درِین D - سورس S و گیت G است که پایه گیت ، جریان عبوری از درین به سورس را کنترل می نماید. فت ها دارای دو نوع N کانال و P کانال هستند. در فت نوع N کانال زمانی که گیت نسبت به سورس مثبت باشد جریان از درین به سورس عبور می کند . FET ها معمولاً بسیار حساس بوده و حتی با الکتریسیته ساکن بدن نیز تحریک می گردند. به همین دلیل نسبت به نویز بسیار حساس هستند.
نوع دیگر ترانزیستورهای اثر میدانی MOSFET ها هستند ( ترانزیستور اثر میدانی اکسید فلزی نیمه هادی - Metal-Oxide Semiconductor Field Efect Transistor ) یکی از اساسی ترین مزیت های ماسفت ها نویز کمتر آنها در مدار است.
فت ها در ساخت فرستنده باند اف ام رادیو نیز کاربرد فراوانی دارند. برای تست کردن فت کانال N با مالتی متر ، نخست پایه گیت را پیدا می کنیم. یعنی پایه ای که نسبت به دو پایه دیگر در یک جهت مقداری رسانایی دارد و در جهت دیگر مقاومت آن بی نهایت است. معمولاً مقاومت بین پایه درین و گیت از مقاومت پایه درین و سورس بیشتر است که از این طریق می توان پایه درین را از سورس تشخیص داد.
اعمال ولتاژ با پلاریته موافق باعث عبور جریان از یک پیوند PN می شود و چنانچه پلاریته ولتاژتغییر کند جریانی از مدار عبور نخواهد کرد.
اگر ساده بخواهیم به موضوع نگاه کنیم عملکرد یک ترانزیستور را می توان تقویت جریان دانست. مدار منطقی کوچکی را در نظر بگیرید که تحت شرایط خاص در خروجی خود جریان بسیار کمی را ایجاد می کند. شما بوسیله یک ترانزیستور می توانید این جریان را تقویت کنید و سپس از این جریان قوی برای قطع و وصل کردن یک رله برقی استفاده کنید.
موارد بسیاری هم وجود دارد که شما از یک ترانزیستور برای تقویت ولتاژ استفاده می کنید. بدیهی است که این خصیصه مستقیما" از خصیصه تقویت جریان این وسیله به ارث می رسد کافی است که جریان وردی و خروجی تقویت شده را روی یک مقاومت بیندازیم تا ولتاژ کم ورودی به ولتاژ تقویت شده خروجی تبدیل شود.
جریان ورودی ای که که یک ترانزیستور می تواند آنرا تقویت کند باید حداقل داشته باشد. چنانچه این جریان کمتر از حداقل نامبرده باشد ترانزیستور در خروجی خود هیچ جریانی را نشان نمی دهد. اما به محض آنکه شما جریان ورودی یک ترانزیستور را به بیش از حداقل مذکور ببرید در خروجی جریان تقویت شده خواهید دید. از این خاصیت ترانزیستور معمولا" برای ساخت سوییچ های الکترونیکی استفاده می شود. از لحاظ ساختاری می توان یک ترانزیستور را با دو دیود مدل کرد.
همانطور که در مطلب قبل (اولین ترانزیستورها) اشاره کردیم ترانزستورهای اولیه از دو پیوند نیمه هادی تشکیل شده اند و بر حسب آنکه چگونه این پیوند ها به یکدیگر متصل شده باشند می توان آنها را به دو نوع اصلی PNP یا NPN تقسیم کرد. برای درک نحوه عملکرد یک ترانزیستور ابتدا باید بدانیم که یک پیوند (Junction) نیمه هادی چگونه کار می کند.
در شکل اول شما یک پیوند نیمه هادی از نوع PN را مشاهده می کنید. که از اتصال دادن دو قطعه نیمه هادی P و N به یکدیگر درست شده است. نیمه هادی های نوع N دارای الکترونهای آزاد و نیمه هادی نوع P دارای تعداد زیادی حفره (Hole) آزاد می باشند. بطور ساده می توان منظور از حفره آزاد را فضایی دانست که در آن کمبود الکترون وجود دارد.
اگر به این تکه نیمه هادی از خارج ولتاژی بصورت آنچه در شکل نمایش داده می شود اعمال کنیم در مدار جریانی برقرار می شود و چنانچه جهت ولتاژ اعمال شده را تغییر دهیم جریانی از مدار عبور نخواهد کرد (چرا؟(
این پیوند نیمه هادی عملکرد ساده یک دیود را مدل می کند. همانطور که می دانید یکی از کاربردهای دیود یکسوسازی جریان های متناوب می باشد. از آنجایی که در محل اتصال نیمه هادی نوع N به P معمولآ یک خازن تشکیل می شود پاسخ فرکانسی یک پیوند PN کاملآ به کیفیت ساخت و اندازه خازن پیوند بستگی دارد. به همین دلیل اولین دیودهای ساخته شده توانایی کار در فرکانسهای رادیویی - مثلآ برای آشکار سازی - را نداشتند.
معمولآ برای کاهش این خازن ناخاسته، سطح پیوند را کاهش داده و آنرا به حد یک نقطه می رسانند. (ادامه دارد ...)
همانطور که می دانید دیود ها جریان الکتریکی را در یک جهت از خود عبور می دهند و در جهت دیگر در مقابل عبور جریان از خود مقاومت بالایی نشان می دهند. این خاصیت آنها باعث شده بود تا در سالهای اولیه ساخت این وسیله الکترونیکی، به آن دریچه یا Valve هم اطلاق شود.
از لحاظ الکتریکی یک دیود هنگامی عبور جریان را از خود ممکن می سازد که شما با برقرار کردن ولتاژ در جهت درست (+ به آند و - به کاتد) آنرا آماده کار کنید. مقدار ولتاژی که باعث میشود تا دیود شروع به هدایت جریان الکتریکی نماید ولتاژ آستانه یا (forward voltage drop) نامیده می شود که چیزی حدود 0.6 تا 0.7 ولت می باشد. به شکل اول توجه کنید که چگونه برای ولتاژهای مثبت - منظور جهت درست می باشد - تا قبل از 0.7 ولت دیود از خود مقاومت نشان می دهد و سپس به یکباره مقاومت خود را از دست می دهد و جریان را از خود عبور می دهد.
استفاده از دیود زنر برای تهیه ولتاژ ثابت
دیود های یکسوساز عموما" در مدارهای جریان متناوب بکار برده می شوند تا با کمک آنها بتوان جریان متناوب (AC) را به مستقیم (DC) تبدیل کرد. این عملیات یکسوسازی یا Rectification نامیده می شود.
از مشهورترین این دیودها می توان به انواع دیودهای 1N400x و یا 1N540x اشاره کرد که دارای ولتاژ کاری بین 50 تا بیش از 1000 ولت هستند و می توانند جریان های بالا را یکسو کنند. این ولتاژ، ولتاژی است که دیود می تواند بدون شکسته شدن - سوختن - در جهت معکوس آنرا تحمل کند.
دیودهای یکسوساز معمولآ از سیلیکون ساخته می شوند و ولتاژ بایاس مستقیم آنها حدود 0.7 ولت می باشد.
ترانزیستور چگونه کار می کند - ۱
اعمال ولتاژ با پلاریته موافق باعث عبور جریان از یک
پیوند PN می شود و چنانچه پلاریته ولتاژتغییر کند جریانی از مدار عبور نخواهد کرد.
اگر ساده بخواهیم به موضوع نگاه کنیم عملکرد یک ترانزیستور را می توان تقویت جریان دانست. مدار منطقی کوچکی را در نظر بگیرید که تحت شرایط خاص در خروجی خود جریان بسیار کمی را ایجاد می کند. شما بوسیله یک ترانزیستور می توانید این جریان را تقویت کنید و سپس از این جریان قوی برای قطع و وصل کردن یک رله برقی استفاده کنید.
موارد بسیاری هم وجود دارد که شما از یک ترانزیستور برای تقویت ولتاژ استفاده می کنید. بدیهی است که این خصیصه مستقیما" از خصیصه تقویت جریان این وسیله به ارث می رسد کافی است که جریان وردی و خروجی تقویت شده را روی یک مقاومت بیندازیم تا ولتاژ کم ورودی به ولتاژ تقویت شده خروجی تبدیل شود.
جریان ورودی ای که که یک ترانزیستور می تواند آنرا تقویت کند باید حداقل داشته باشد. چنانچه این جریان کمتر از حداقل نامبرده باشد ترانزیستور در خروجی خود هیچ جریانی را نشان نمی دهد. اما به محض آنکه شما جریان ورودی یک ترانزیستور را به بیش از حداقل مذکور ببرید در خروجی جریان تقویت شده خواهید دید. از این خاصیت ترانزیستور معمولا" برای ساخت سوییچ های الکترونیکی استفاده می شود.
از لحاظ ساختاری می توان یک ترانزیستور را با دو دیود مدل کرد.
همانطور که در مطلب قبل (اولین ترانزیستورها) اشاره کردیم ترانزستورهای اولیه از دو پیوند نیمه هادی تشکیل شده اند و بر حسب آنکه چگونه این پیوند ها به یکدیگر متصل شده باشند می توان آنها را به دو نوع اصلی PNP یا NPN تقسیم کرد. برای درک نحوه عملکرد یک ترانزیستور ابتدا باید بدانیم که یک پیوند (Junction) نیمه هادی چگونه کار می کند.
در شکل اول شما یک پیوند نیمه هادی از نوع PN را مشاهده می کنید. که از اتصال دادن دو قطعه نیمه هادی P و N به یکدیگر درست شده است. نیمه هادی های نوع N دارای الکترونهای آزاد و نیمه هادی نوع P دارای تعداد زیادی حفره (Hole) آزاد می باشند. بطور ساده می توان منظور از حفره آزاد را فضایی دانست که در آن کمبود الکترون وجود دارد.
اگر به این تکه نیمه هادی از خارج ولتاژی بصورت آنچه در شکل نمایش داده می شود اعمال کنیم در مدار جریانی برقرار می شود و چنانچه جهت ولتاژ اعمال شده را تغییر دهیم جریانی از مدار عبور نخواهد کرد چرا؟
این پیوند نیمه هادی عملکرد ساده یک دیود را مدل می کند. همانطور که می دانید یکی از کاربردهای دیود یکسوسازی جریان های متناوب می باشد. از آنجایی که در محل اتصال نیمه هادی نوع N به P معمولآ یک خازن تشکیل می شود پاسخ فرکانسی یک پیوند PN کاملآ به کیفیت ساخت و اندازه خازن پیوند بستگی دارد. به همین دلیل اولین دیودهای ساخته شده توانایی کار در فرکانسهای رادیویی - مثلآ برای آشکار سازی - را نداشتند.
معمولآ برای کاهش این خازن ناخاسته، سطح پیوند را کاهش داده و آنرا به حد یک نقطه می رسانند.
ترانزیستور چگونه کار می کند - ۲
منحنی رفتار یک دیود در هنگام اعمال ولتاژ مثبت
در مطلب قبل (ترانزیستور چگونه کار می کند - ۱) کلیاتی راجع به ترانزیستور بیان کردیم همچنین گفتیم که اگر به یک پیوند PN ولتاژ با پلاریته موافق متصل کنیم جریان از این پیوند عبور کرده و اگر ولتاژ را معکوس کنیم در مقابل عبور جریان از خود مقاومت نشان می دهد. برای درک دقیق نحوه کارکرد یک ترانزیستور باید با نحوه کار دیود آشنا شویم، باید اشاره کنیم که قصد نداریم تا به تفضیل وارد بحث فیزیک الکترونیک شویم و فقط سعی خواهیم کرد با بیان نتایج حاصل از این شاخه علمی ابتدا عملکرد دیود و سپس ترانزیستور را بررسی کنیم.
همانطور که می دانید دیود ها جریان الکتریکی را در یک جهت از خود عبور می دهند و در جهت دیگر در مقابل عبور جریان از خود مقاومت بالایی نشان می دهند. این خاصیت آنها باعث شده بود تا در سالهای اولیه ساخت این وسیله الکترونیکی، به آن دریچه یا Valve هم اطلاق شود.
از لحاظ الکتریکی یک دیود هنگامی عبور جریان را از خود ممکن می سازد که شما با برقرار کردن ولتاژ در جهت درست (+ به آند و - به کاتد) آنرا آماده کار کنید. مقدار ولتاژی که باعث میشود تا دیود شروع به هدایت جریان الکتریکی نماید ولتاژ آستانه یا (forward voltage drop) نامیده می شود که چیزی حدود 0.6 تا 0.7 ولت می باشد. به شکل اول توجه کنید که چگونه برای ولتاژهای مثبت - منظور جهت درست می باشد - تا قبل از 0.7 ولت دیود از خود مقاومت نشان می دهد و سپس به یکباره مقاومت خود را از دست می دهد و جریان را از خود عبور می دهد.
نماد فنی و دو نمونه از انواع دیوید
اما هنگامی که شما ولتاژ معکوس به دیود متصل می کنید (+ به کاتد و - به آند) جریانی از دیود عبور نمی کند، مگر جریان بسیار کمی که به جریان نشتی یا Leakage معرف است که در حدود چند µA یا حتی کمتر می باشد. این مقدار جریان معمولآ در اغلب مدار های الکترونیکی قابل صرفنظر کردن بوده و تاثیر در رفتار سایر المانهای مدار نمیگذارد. اما نکته مهم آنکه تمام دیود ها یک آستانه برای حداکثر ولتاژ معکوس دارند که اگر ولتاژمعکوس بیش از آن شود دیوید می سوزد و جریان را در جهت معکوس هم عبور می دهد. به این ولتاژ آستانه شکست یا Breakdown گفته می شود.
در دسته بندی اصلی، دیودها را به سه قسمت اصلی تقسیم می کنند، دیودهای سیگنال (Signal) که برای آشکار سازی در رادیو بکار می روند و جریانی در حد میلی آمپر از خود عبور می دهند، دیودهای یکسوکننده (Rectifiers) که برای یکسوسازی جریانهای متناوب بکاربرده می شوند و توانایی عبور جریانهای زیاد را دارند و بالآخره دیود های زنر (Zener) که برای تثبیت ولتاژ از آنها استفاده می شود
ترانزیستور چگونه کار میکند - ۳
استفاده از دیود سیگنار در مدار رله برای جلوگیری از
ایجاد ولتاژ های ناخواسته زیاد
در ادامه بحث نحوه کارکرد یک ترانزیستور لازم است قدری راجع به انواع دیود که در مطلب قبل به آنها اشاره کردیم داشته باشیم.
دیودهای سیگنال
این نوع از انواع دیودها برای پردازش سیگنالهای ضعیف - معمولا" رادیویی - و کم جریان تا حداکثر حدود 100mA کاربرد دارند. معروفترین و پر استفاده ترین آنها که ممکن است با آن آشنا باشید دیود 1N4148 است که از سیلیکون ساخته شده است و ولتاژ شکست مستقیم آن 0.7 ولت است.
اما برخی از دیود های سیگنال از ژرمانیم هم ساخته می شوند، مانند OA90 که ولتاژ شکست مستقیم پایینتری دارد، حدود 0.2 ولت. به همین دلیل از این نوع دیود بیشتربرای آشکار سازی امواج مدوله شده رادیویی استفاده می شود.
بصورت یک قانون کلی هنگامی که ولتاژ شکست مستقیم دیوید خیلی مهم نباشد، از دیودهای سیلیکون استفاده می شود. دلیل آن مقاومت بهتر آنها در مقابل حرارت محیط یا حرارت هنگام لحیم کاری و نیز مقاومت الکتریکی کمتر در ولتاژ مستقیم است. همچنین دیود های سیلیکونی سیگنال معمولا" در ولتاژ معکوس جریان نشتی بسیار کمتری نسبت به نوع ژرمانیم دارند.
از کاربرد دیگری که برای دیودهای سیگنال وجود دارد می توان به استفاده از آنها برای حفاظت مدار هنگامی که رله در یک مدار الکترونیکی قرار دارد نام برد. هنگامی که رله خاموش می شود تغییر جریان در سیم پیچ آن میتواند در دوسر آن ولتاژ بسیار زیادی القا کند که قرار دادن یک دیود در جهت مناسب میتواند این ولتاژ را خنثی کند. به شکل اول توجه کنید.
استفاده از دیود زنر برای تهیه ولتاژ ثابت
دیودهای زنر
همانطور که قبلا" اشاره کردیم از این دیودها برای تثبیت ولتاژ استفاده می شود. این نوع از دیود ها برای شکسته شدن با اطمینان در ولتاژ معکوس ساخته شده اند، بنابراین بدون ترس می توان آنها را در جهت معکوس بایاس کرد و از آنها برای تثبیت ولتاژ استفاده نمود. به هنگام استفاده از آنها معمولا" از یک مقاومت برای محدود کردن جریان بطور سری نیز استفاده می شود. به شکل نگاه کنید به این طریق شما یک ولتاژ رفرنس دقیق بدست آورده اید.
دیودهای زنر معمولا" با حروفی که در آنها Z وجود دارد نامگذاری می شوند مانند BZX یا BZY و ... و ولتاژ شکست آنها نیز معمولا" روی دیود نوشته می شود، مانند 4V7 که به معنی 4.7 ولت است. همچنین توان تحمل این دیود ها نیز معمولا" مشخص است و شما هنگام خرید باید آنرا به فروشنده بگویید، در بازار نوع 400mW و 1.3W آن بسیار رایج است.
ترانزيستور چگونه کار میکند؟ - ۴
یکسو ساز نیم موج با استفاده از یک دیود.
در مطلب قبل راجع به دیودهای زنر و سیگنال صحبت کردیم و ضمن آوردن مثال، توضیح دادیم که این دیودها چگونه کار میکنند. حال در ادامه این مجموعه مطالب ابتدا به تشریح مختصر دیود های یکسو کننده میپردازیم.
دیود های یکسوساز عموما" در مدارهای جریان متناوب بکار برده می شوند تا با کمک آنها بتوان جریان متناوب (AC) را به مستقیم (DC) تبدیل کرد. این عملیات یکسوسازی یا Rectification نامیده می شود.
از مشهورترین این دیودها می توان به انواع دیودهای 1N400x و یا 1N540x اشاره کرد که دارای ولتاژ کاری بین 50 تا بیش از 1000 ولت هستند و می توانند جریان های بالا را یکسو کنند. این ولتاژ، ولتاژی است که دیود می تواند بدون شکسته شدن - سوختن - در جهت معکوس آنرا تحمل کند.
دیودهای یکسوساز معمولآ از سیلیکون ساخته می شوند و ولتاژ بایاس مستقیم آنها حدود 0.7 ولت می باشد. یکسو سازی جریان متناوب با یک دیود
شما می توانید با قرار دادن فقط یک دیود در مسیر جریان متناوب مانع از گذر سیکل منفی جریان در جهت مورد نظر در مدار باشید به شکل اول دقت کنید که چگونه قرار دادن یک دیود در جهت موافق، فقط به نیم سیکل های مثبت اجاز خروج به سمت بار را می دهد. به این روش یکسوسازی نیم موج یا Half Wave گفته می شود.
بدیهی است برای بالابردن کیفیت موج خروجی و نزدیک کردن آن به یک ولتاژ مستقیم باید در خروجی از خازن هایی با ظرفیت بالا استفاده کرد. این خازن در نیم سیکل مثبت شارژ می شود و در نیم سیکل منفی در غیاب منبع تغذیه، وظیفه تغذیه بار را بعهده خواهد داشت.
یکسو ساز تمام موج با استفاده از پل دیود.
پل دیود یا Bridge Rectifiers
اما برای آنکه بتوانیم از نیمه منفی موج ورودی که در نیمی از سیکل جریان امکان عبور به خروجی را ندارد، استفاده کنیم باید از مداری بعتوان پل دیود استفاده کنیم. پل دیود همانطور که از شکل دوم مشخص است متشکل از چهار دیود به یکدیگر متصل می باشد. جریان متناوب به قسمتی که دو جفت آند و کاتد به یکدیگر متصل هستند وصل می شود و خروجی از یک جف آند و یک جفت کاتد به یکدیگر متصل شده گرفته می شود.
روش کار به اینصورت است که در سیکل مثبت مدار دیودهای 1 و 2 عمل کرده و خروجی را تامین میکنند و در سیکل منفی مدار دیودهای 3 و 4 عمل می کند و باز خروجی را در همان وضعیت تامین می کند.
ترانزيستور چگونه کار میکند؟ - ۵
نماد و شماتیک پیوندها در ترانزیستورها
در مطالب قبل بطور خلاصه راجع به دیودها و ترانزیستورها و پیوندهای PN صحبت کرده مثالهایی از کاربرد اصلی انواع دیود ارائه کردیم. در این قسمت راجع به گونه های ساده اولین ترانزیستورها که از سه لایه نیمه هادی تشکیل شده اند صحبت خواهیم کرد.
بصورت استاندارد دو نوع ترانزیستور بصورت PNP و NPN داریم. انتخاب نامه آنها به نحوه کنار هم قرار گرفتن لایه های نیمه هادی و پلاریته آنها بستگی دارد. هر چند در اوایل ساخت این وسیله الکترونیکی و جایگزینی آن با لامپهای خلاء، ترانزستورها اغلب از جنس ژرمانیم و بصورت PNP ساخته می شدند اما محدودیت های ساخت و فن آوری از یکطرف و تفاوت بهره دریافتی از طرف دیگر، سازندگان را مجبور کرد که بعدها بیشتر از نیمه هادیی از جنس سیلیکون و با پلاریته NPN برای ساخت ترانزیستور استفاده کنند. تفاوت خاصی در عملکرد این دو نمونه وجود ندارد و این بدان معنی نیست که ترانزیستور ژرمانیم با پلاریته NPN یا سیلیکون با پلاریته PNP وجود ندارد.
نمای واقعی تری از پیوندها در یک ترانزیستور که تفاوت
کلکتور و امیتر را بوضوح نشان می دهد.
برای هریک از لایه های نیمه هادی که در یک ترانزیستور وجود دارد یک پایه در نظر گرفته شده است که ارتباط مدار بیرونی را به نیمه هادی ها میسر می سازد. این پایه ها به نامهای Base (پایه) ، Collector (جمع کننده) و Emitter (منتشر کننده) مشخص می شوند. اگر به ساختار لایه ای یک ترانزیستور دقت کنیم بنظر تفاوت خاصی میان Collector و Emitter دیده نمی شود اما واقعیت اینگونه نیست. چرا که ضخامت و بزرگی لایه Collector به مراتب از Emitter بزرگتر است و این عملا" باعث می شود که این دو لایه با وجود تشابه پلاریته ای که دارند با یکدیگر تفاوت داشته باشند. با وجود این معمولا" در شکل ها برای سهولت این دو لایه را بصورت یکسان در نظر میگیردند.
بدون آنکه در این مطلب قصد بررسی دقیق نحوه کار یک ترانزیستور را داشته باشیم، قصد داریم ساده ترین مداری که می توان با یک ترانزیستور تهیه کرد را به شما معرفی کرده و کاربرد آنرا برای شما شرح دهیم. به شکل زیر نگاه کنید.
مدار ساده برای آشنایی با طرز کار یک ترانزیستور
بطور جداگانه بین E و C و همچنین بین E و B منابع تغذیه ای قرار داده ایم. مقاومت ها یی که در مسیر هریک از این منابع ولتاژ قرار دادیم صرفا" برای محدود کردن جریان بوده و نه چیز دیگر. چرا که در صورت نبود آنها، پیوندها بر اثر کشیده شدن جریان زیاد خواهند سوخت.
طرز کار ترانزیستور به اینصورت است، چنانچه پیوند BE را بصورت مستقیم بایاس (Bias به معنی اعمال ولتاژ و تحریک است) کنیم بطوری که این پیوند PN روشن شود (برای اینکار کافی است که به این پیوند حدود 0.6 تا 0.7 ولت با توجه به نوع ترانزیستور ولتاژ اعمال شود)، در آنصورت از مدار بسته شده میان E و C می توان جریان بسیار بالایی کشید. اگر به شکل دوم دقت کنید بوضوح خواهید فهمید که این عمل چگونه امکان پذیر است. در حالت عادی میان E و C هیچ مدار بازی وجود ندارد اما به محض آنکه شما پیوند BE را با پلاریته موافق بایاس کنید، با توجه به آنچه قبلا" راجع به یک پیوند PN توضیح دادیم، این پیوند تقریبا" بصورت اتصال کوتاه عمل می کند و شما عملا" خواهید توانست از پایه های E و C جریان قابل ملاحظه ای بکشید. (در واقع در اینحالت می توان فرض کرد که در شکل دوم عملا" لایه PN مربوط به BE از بین می رود و بین EC یک اتصال کوتاه رخ می دهد.)
بنابراین مشاهده می کنید که با برقراری یک جریان کوچک Ib شما می توانید یک جریان بزرگ Ic را داشته باشید. این مدار اساس سوئیچ های الکترونیک در مدارهای الکترونیکی است. بعنوان مثال شما می توانید در مدار کلکتور یک رله قرار دهید که با جریان مثلا" چند آمپری کار می کند و در عوض با اعمال یک جریان بسیار ضعیف در حد میلی آمپر - حتی کمتر - در مدار بیس که ممکن است از طریق یک مدار دیجیتال تهیه شود، به رله فرمان روشن یا خاموش شدن بدهید.
ترانزیستور اثر میدان،
دستهای از ترانزیستورها هستند که دارای سه پایه ی سورس و درین و گیت میباشند. این دسته از ترانزیستورها خود به دو گروه ترانزیستورهای اثر میدان اماواس (MOSFET) و ترانزیستورهای اثر میدان پیوندی یا JFET تقسیم میشوند. در این نوع ترانزیستورها، برخلاف ترانزیستورهای دو قطبی پیوندی که کنترل جریان امیتر و کلکتور با جریان ورودی به بیس صورت میگیرد، کنترل جریان سورس و درین با اعمال ولتاژ به گیت صورت میگیرد.این ترانزیستورها در ساخت مجتمعهای آنالوگ مانند IC و... استفاده میشود.
فتها در ساخت فرستنده باند اف ام رادیو نیز کاربرد فراوانی دارند. برای تست کردن فت کانال N با مالتی متر ، نخست پایه گیت را پیدا میکنیم. یعنی پایهای که نسبت به دو پایه دیگر در یک جهت مقداری رسانایی دارد و در جهت دیگر مقاومت آن بی نهایت است. معمولاً مقاومت بین پایه درین و گیت از مقاومت پایه درین و سورس بیشتر است که از این طریق میتوان پایه درین را از سورس تشخیص داد.
ترانزیستور اثرمیدانی نیمهرسانای اکسید فلز
ترانزیستور اثرمیدانی نیمهرسانای اکسید فلز یا ماسفت (MOSFET، سرنام metal–oxide–semiconductor field-effect transistor) معروفترین ترانزیستور اثرمیدان در مدارهای آنالوگ و دیجیتال است.
این گونه از ترانزیستور اثرمیدان نخستین بار در ۱۳۰۴ (۱۹۲۵ م) معرفی شد. در آن هنگام، ساخت و به کارگیری این ترانزیستورها، به سبب نبود علم و ابزار و امکان، با دشواری همراه بود و از همین روی، برای پنج دهه فراموش شدند و از میدانِ پیشرفتهای الکترونیک بر کنار ماندند. در آغازِ دههٔ ۱۹۷۰م، بارِ دیگر نگاهها به MOSFETها افتاد و برای ساختنِ مدارهای مجتمع به کار گرفته شدند.
ترانزیستورهای MOS، بسته به کانالی که در آنها شکل میگیرد، NMOS یا PMOS نامیده میشوند. در آغازِ کار، PMOS، ترانزیستورِ پرکاربردتر در فناوری MOS بود. اما از آن جا که ساختنِ NMOS آسانتر است و مساحتِ کمتری هم میگیرد، از PMOS پیشی گرفت. بر خلافِ ترانزیستورهای دوقطبی، در ترانزیستورهای MOSFET، جریان، نتیجهٔ شارش ِ تنها یک حامل (یا الکترون یا حفره) در میانِ پیوندها است و از این رو، این ترانزیستورها را تکقطبی هم مینامند.
ترانزیستورهای اثرِ میدانِ MOS، را میتوان بسیار ریزتر و سادهتر از ترانزیستورهای دوقطبی ساخت؛ بی آن که- حتا در مدارها و تابعهای پیچیده و مقیاسهای بزرگ هم- نیازی به مقاومت، دیود، یا دیگر قطعههای الکترونیکی داشته باشند. همین ویژگی، تولیدِ انبوهِ آنها را آسان میکند، چندان که هم اکنون بیشتر از ۸۵ درصدِ مدارهای مجتمع، بر پایهٔ فناوریِ MOS طراحی و ساخته میشوند.
ساختار و کارکرد ماسفت افزایشی
در ترانزیستور اثرِ میدان (فت) - FET چنان که از نام اش پیدا است، پایهٔ کنترلی، جریانی مصرف نمیکند و تنها با اعمال ولتاژ و ایجاد میدان درون نیمه رسانا، جریان عبوری از FET کنترل میشود. از همین روی ورودی این مدار هیچ اثر بارگذاری بر روی طبقات تقویت قبلی نمیگذارد و امپدانس بسیار بالایی دارد.
حالتهای سهگانهٔ کارِ ترانزیستور
فت دارای سه پایه با نامهای درین D، سورس S و گیت G است که پایه گیت، جریان عبوری از درین به سورس را کنترل میکند. فتها دارای دو نوع N کانال و P کانال هستند. در فت نوع N کانال زمانی که گیت نسبت به سورس مثبت باشد جریان از درین به سورس عبور میکند. FETها معمولاً بسیار حساس بوده و حتی با الکتریسیته ساکن بدن نیز تحریک میگردند. به همین دلیل نسبت به نویز بسیار حساس هستند. نوع دیگر ترانزیستورهای اثر میدانی MOSFETها هستند (ترانزیستور اثرمیدانی نیمهرسانای اکسید فلز) یکی از اساسی ترین مزیتهای ماسفتها نویز کمتر آنها در مدار است.
فتها در ساخت فرستنده باند اف ام رادیو نیز کاربرد فراوانی دارند. برای تست کردن فت کانال N با مالتی متر، نخست پایه گیت را پیدا میکنیم. یعنی پایهای که نسبت به دو پایه دیگر در یک جهت مقداری رسانایی دارد و در جهت دیگر مقاومت آن بی نهایت است. معمولاً مقاومت بین پایه درین و گیت از مقاومت پایه درین و سورس بیشتر است که از این طریق میتوان پایهٔ درین را از سورس تشخیص داد.
ماسفت کاهشی
ساختار این گونهٔ ترانزیستورِ MOS، همانند ساختار ترانزیستورهای افزایشی است، تنها با این تفاوت که هنگامِ ساخت آن، کانال را، به وسیلهٔ یک نوار از جنس سیلیسیم، میانِ سورس و درین تعبیه میکنند. از این رو، اگر اختلاف پتانسیل میان آن دو اعمال شود، جریانی از سورس به درین خواهیم داشت؛ هرچند که ولتاژ اعمال شده به گیت صفر باشد.
انواع
دو دسته مهم از ترانزیستورها BJT (ترانزیستور دوقطبی پیوندی) (Bypolar Junction Transistors) و FET (ترانزیستور اثر میدان) (Field Effect Transistors) هستند. ترانزیستورهای اثزمیدان یا FETها نیز خود به دو دسته ی ترانزیستور اثر میدان پیوندی(JFET) و MOSFETها (Metal Oxide SemiConductor Field Effect Transistor) تقسیم میشوند.
ترانزیستور اثر میدانی(JFET)
در ترانزیستور اثر میدانی با اعمال یک ولتاژ به پایه گیت میزان جریان عبوری از دو پایه سورس و درین کنترل میشود. ترانزیستور اثر میدانی بر دو قسم است: نوع n یا N-Type و نوع p یا P-Type. از دیدگاهی دیگر این ترانزیستورها در دو نوع افزایشی و تخلیهای ساخته میشوند.نواحی کار این ترانزستورها شامل "فعال" و "اشباع" و "ترایود" است این ترانزیستورها تقریباً هیچ استفادهای ندارند چون جریان دهی آنها محدود است و به سختی مجتمع میشوند.
ترانزیستور اثر میدانی(MOSFET)
این ترانزیستورها نیز مانند Jfetها عمل میکنند با این تفاوت که جریان ورودی گیت آنها صفر است. همچنین رابطه جریان با ولتاژ نیز متفاوت است. این ترانزیستورها دارای دو نوع PMOS و NMOS هستند که تکنولوژی استفاده از دو نوع آن در یک مدار تکنولوژی CMOS نام دارد. این ترانزیستورها امروزه بسیار کاربرد دارند زیرا براحتی مجتمع میشوند و فضای کمتری اشغال میکنند. همچنین مصرف توان بسیار ناچیزی دارند.
به تکنولوژیهایی که از دو نوع ترانزیستورهای دوقطبی و Mosfet در آن واحد استفاده میکنند Bicmos میگویند.
البته نقطه کار این ترانزیستورها نسبت به دما حساس است وتغییر میکند. بنابراین بیشتر در سوئیچینگ بکار میروند.
ترانزیستور دوقطبی پیوندی
در ترانزیستور دو قطبی پیوندی با اعمال یک جریان به پایه بیس جریان عبوری از دو پایه کلکتور و امیتر کنترل میشود. ترانزیستورهای دوقطبی پیوندی در دونوع npn و pnp ساخته میشوند. بسته به حالت بایاس این ترانزیستورها ممکن است در ناحیه قطع، فعال و یا اشباع کار کنند. سرعت بالای این ترانزیستورها و بعضی قابلیتهای دیگر باعث شده که هنوز هم از آنها در بعضی مدارات خاص استفاده شود.
ترانزیستور یک قطعه الکترونیکی فعال بوده و از ترکیب سه قطعه n و p بدست میآید که از ترزیق حاملین بار اقلیت در یک پیوند با گرایش مستقیم استفاده میکند و دارای سه پایه به نامهای بیس (B)، امیتر (E) و کلکتور (C) میباشد و چون در این قطعه اثر الکترونها و حفرهها هر دو مهم است، به آن یک ترانزیستور دوقطبی گفته میشود.
کاربرد
ترانزیستور دارای 3 ناحیه کاری میباشد.ناحیه قطع/ناحیه فعال(کاری یا خطی)/ناحیه اشباع ناحیه قطع حالتی است که ترانزیستور در ان ناحیه فعالیت خاصی انجام نمیدهد.اگر ولتاژ بیس را افزایش دهیم ترانزیستور از حالت قطع بیرون امده و به ناحیه فعال وارد میشود در حالت فعال ترانزیستور مثل یک عنصر تقریبا خطی عمل میکند اگر ولتاژ بیس را همچنان افزایش دهیم به ناحیه ای میرسیم که با افزایش جریان ورودی در بیس دیگر شاهد افزایش جریان بین کلکتور و امیتر نخواهیم بود به این حالت میگویند حالت اشباع و اگر جریان ورودی به بیس زیاد تر شود امکان سوختن ترانزیستور وجود دارد. ترانزیستور هم در مدارات الکترونیک آنالوگ و هم در مدارات الکترونیک دیجیتال کاربردهای بسیار وسیعی دارد. درمدارات آنالوگ ترانزیستور در حالت فعال کار میکند و میتوان از آن به عنوان تقویت کننده یا تنظیم کننده ولتاژ (رگولاتور) و ... استفاده کرد. و در مدارات دیجیتال ترانزیستور در دو ناحیه قطع و اشباع فعالیت میکند که میتوان از این حالت ترانزیستور در پیاده سازی مدار منطقی، حافظه، سوئیچ کردن و ... استفاده کرد.به جرات می توان گفت که ترانزیستور قلب تپنده الکترونیک است.
عملکرد
ترانزیستور از دیدگاه مداری یک عنصر سهپایه میباشد که با اعمال یک سیگنال به یکی از پایههای آن میزان جریان عبور کننده از دو پایه دیگر آن را میتوان تنظیم کرد. برای عملکرد صحیح ترانزیستور در مدار باید توسط المانهای دیگر مانند مقاومتها و ... جریانها و ولتاژهای لازم را برای آن فراهم کرد و یا اصطلاحاً آن را بایاس کرد
معرفی
ترانزیستورهای جدید به دو دسته کلی تقسیم می شوند: ترانزیستورهای اتصال دوقطبی(BJTs) و ترانزیستورهای اثر میدانی (FETs). اعمال جریان در BJTها و ولتاژ در FETها بیین ورودی وترمینال مشترک رسانایی بین خروجی و ترمینال مشترک را افزایش می دهد، از اینرو سبب کنترل جریان بین آنها می شود. مشخصات ترانز